A Monte Carlo Method for Integration of Multivariate Smooth Functions
نویسندگان
چکیده
منابع مشابه
A Monte Carlo Method for Integration of Multivariate Smooth Functions
We study a Monte Carlo algorithm that is based on a specific (randomly shifted and dilated) lattice point set. The main result of this paper is that the mean squared error for a given compactly supported, square-integrable function is bounded by n times the L2-norm of the Fourier transform outside a region around the origin, where n is the expected number of function evaluations. As corollaries...
متن کاملQuasi-Monte Carlo quadratures for multivariate smooth functions
We compute approximations of multivariate smooth functions by fitting random and quasi-random data to reduced size Tchebychef polynomial approximation models. We discuss the optimization of the data used in the least square method by testing several quasi-random sequences. Points built from optimal quadratic quantization are especially efficient. Very accurate approximation type quadrature form...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولA New Quasi-Monte Carlo Algorithm for Numerical Integration of Smooth Functions
Bachvalov proved that the optimal order of convergence of a Monte Carlo method for numerical integration of functions with bounded kth order derivatives is O ( N− k s − 2 ) , where s is the dimension. We construct a new Monte Carlo algorithm with such rate of convergence, which adapts to the variations of the sub-integral function and gains substantially in accuracy, when a low-discrepancy sequ...
متن کاملStrong tractability of multivariate integration using quasi-Monte Carlo algorithms
We study quasi–Monte Carlo algorithms based on low discrepancy sequences for multivariate integration. We consider the problem of how the minimal number of function evaluations needed to reduce the worst-case error from its initial error by a factor of ε depends on ε−1 and the dimension s. Strong tractability means that it does not depend on s and is bounded by a polynomial in ε−1. The least po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2017
ISSN: 0036-1429,1095-7170
DOI: 10.1137/16m1075557